

VITOCELL 100-V

Вертикальный емкостный водонагреватель Объем от 160 до 1000 л

Технический паспорт

Номер заказа и цены см. в прайс-листе

VITOCELL 100-V Tun CVA

Вертикальный емкостный водонагреватель стальной, с эмалевым покрытием "Ceraprotect"

Информация об изделии

"Напольное" решение для экономного приготовления горячей воды. Емкостный водонагреватель Vitocell 100-V в вертикальном исполнении поставляется с водонаполнением до 1000 л.

Основные преимущества

- Коррозионно-стойкий стальной бак водонагревателя с внутренним эмалевым покрытием "Ceraprotect".
- Дополнительная защита с помощью магниевого анода, анод с питанием от внешнего источника поставляется в качестве принадлежности.
- Нагрев всего объема воды с помощью змеевика, достигающего дна водонагревателя.
- Высокий уровень комфорта при приготовлении горячей воды благодаря быстрому и равномерному нагреву воды с помощью змеевика большого размера.
- Незначительные тепловые потери благодаря высокоэффективной круговой теплоизоляции.
- (A) B (C) (D)

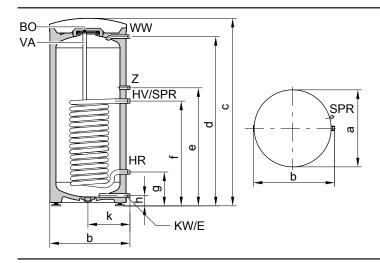
- Универсальное применение при повышенной потребности в горячем водоснабжении можно соединить несколько емкостных водонагревателей Vitocell 100-V в батареи посредством коллекторов.
- По желанию возможна поставка или дополнительная установка электронагревательной вставки (объемом свыше 300 л).
- Для облегчения подачи на место установки водонагреватели Vitocell 100-V объемом свыше 500 л оснащены съемной теплоизоляцией.
- Магниевый анод или анод с питанием от постороннего источника
- (B) Стальной водонагреватель с внутренним эмалевым покрытием "Ceraprotect"
- © Высокоэффективная круговая теплоизоляция
- Нагрев всего объема воды с помощью змеевика, достигающего дна водонагревателя.

Технические характеристики Vitocell 100-V - отдельный прибор

Для приготовления горячей воды в сочетании с водогрейными котлами и системами централизованного отопления, по выбору с электронагревательной вставкой в качестве дополнительного оборудования для емкостного водонагревателя объемом 300 и 500 л.

- Рабочее давление в греющем контуре до 25 бар (2,5 МПа)
- Рабочее давление в контуре ГВС до 10 бар (1,0 МПа)

Пригодна для следующих установок:


- Температура контура ГВС до 95 °C
- Температура подающей магистрали греющего контура до 160 °C

Объем		Л	160	200	300	500	750	1000
Регистрационный номер по DIN					9W241/11	-13 MC/E		
Долговременная мощность	90 °C	кВт	40	40	53	70	123	136
при нагреве воды в контуре ГВС с		л/ч	982	982	1302	1720	3022	3341
10 до 45 °C и температуре подаю-	80 °C	кВт	32	32	44	58	99	111
щей магистрали теплоносителя		л/ч	786	786	1081	1425	2432	2725
при указанном ниже расходе	70 °C	кВт	25	25	33	45	75	86
теплоносителя		л/ч	614	614	811	1106	1843	2113
	60 °C	кВт	17	17	23	32	53	59
		л/ч	417	417	565	786	1302	1450
	50 °C	кВт	9	9	18	24	28	33
		л/ч	221	221	442	589	688	810
Долговременная мощность	90 °C	кВт	36	36	45	53	102	121
при нагреве воды в контуре ГВС с		л/ч	619	619	774	911	1754	2081
10 до 60 °C и температуре подаю-	80 °C	кВт	28	28	34	44	77	91
щей магистрали теплоносителя		л/ч	482	482	584	756	1324	1565
при указанном ниже расходе	70 °C	кВт	19	19	23	33	53	61
теплоносителя		л/ч	327	327	395	567	912	1050
Расход теплоносителя при указан	ной	м ³ /ч	3,0	3,0	3,0	3,0	5,0	5,0
долговременной мощности								
Затраты тепла на поддержание г	отовно-	кВтч/	1,50	1,70	2,20	2,50	3,50	3,90
сти q _{BS}		24 ч						
при разности температур 45 К (рез	ультаты							
измерений согласно DIN 4753-8.								
Размеры								
Длина (∅)								
с теплоизоляцией	а	MM	581	581	633	859	960	1060
– без теплоизоляции		MM	-	_	_	650	750	850
Ширина								
с теплоизоляцией	b	MM	608	608	705	923	1045	1145
без теплоизоляции		MM	-	_	_	837	947	1047
Высота								
с теплоизоляцией	С	MM	1189	1409	1746	1948	2106	2166
без теплоизоляции		MM	-	_	_	1844	2005	2060
Кантовальный размер								
с теплоизоляцией		MM	1260	1460	1792	_	_	_
– без теплоизоляции		MM	-	_	_	1860	2050	2100
Монтажная высота		MM	_		_	2045	2190	2250
Масса в сборе с теплоизоляцией		КГ	86	97	151	181	295	367
Объем теплоносителя		Л	5,5	5,5	10,0	12,5	24,5	26,8
Теплообменная поверхность		M ²	1,0	1,0	1,5	1,9	3,7	4,0
Патрубки (наружная резьба)								
Подающ. и обрат. магистраль ОК		R	1	1	1	1	11/4	11/4
Холодная вода, горячая вода		R	3/4	3/4	1	11/4	11/4	11/4
Циркуляция		R	3/4	3/4	1	1	11/4	11/4

Указание по долговременной мощности

При проектировании установки для работы с указанной или рассчитанной долговременной мощностью необходимо предусмотреть соответствующий насос. Указанная долговременная мощность достигается только при условии, если номинальная тепловая производительность водогрейного котла ≥ долговременной мощности.

Объем 160 и 200 литров

ВÖ Отверстие для визуального контроля и чистки

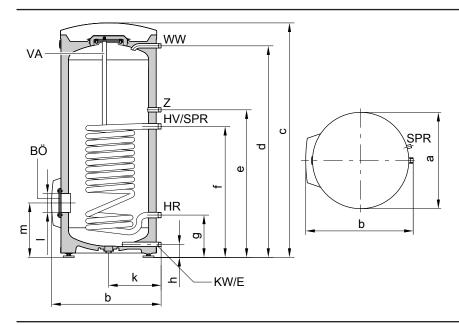
Е Опорожнение

HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

KW Холодная вода

SPR Датчик температуры емкостного водонагревателя для регулирования температуры водонагревателя или терморегулятор


Объем		Л	160	200
Длина (∅)	а	ММ	581	581
Ширина	b	MM	608	608
Высота	С	MM	1189	1409
	d	MM	1050	1270
	е	MM	884	884
	f	MM	634	634
	g	MM	249	249
	h	MM	72	72
	k	MM	317	317

VA Магниевый защитный анод

WW Горячая вода

Z Циркуляция

Объем 300 литров

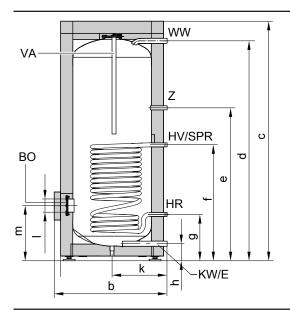
ВО Отверстие для визуального контроля и чистки

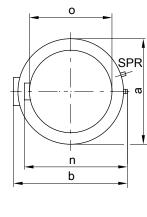
Е Опорожнение

HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

KW Холодная вода


SPR Датчик температуры емкостного водонагревателя для регулирования температуры водонагревателя или терморегулятор


	_
300	
633	
705	
1746	
1600	

VA Магниевый защитный анод WW Горячая вода Z Циркуляция

Объем		Л	300
Длина (∅)	а	MM	633
Ширина	b	MM	705
Высота	С	MM	1746
	d	MM	1600
	е	MM	1115
	f	MM	875
	g	MM	260
	h	MM	76
	k	MM	343
	л	MM	Ø 100
	m	MM	333

Объем 500 литров

ВО Отверстие для визуального контроля и чистки

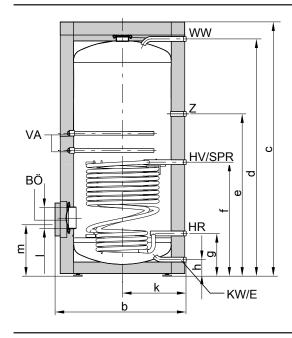
Е Опорожнение

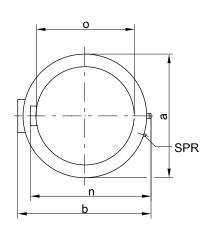
HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

KW Холодная вода

SPR Датчик температуры емкостного водонагревателя для регулирования температуры водонагревателя или терморегулятор


Объем		Л	500
Длина (∅)	а	MM	859
Ширина	b	MM	923
Высота	С	MM	1948
	d	MM	1784
	е	MM	1230
	f	MM	924
	g	MM	349
	h	MM	107
	k	MM	455
	I	MM	Ø 100
	m	MM	422
	n	MM	837
без теплоизоляции	0	MM	Ø 650


VA Магниевый защитный анод

WW Горячая вода

Z Циркуляция

Объем 750 и 1000 литров

- ΒÖ Отверстие для визуального контроля и чистки
- Ε Опорожнение
- HR Обратная магистраль греющего контура
- HVПодающая магистраль греющего контура
- KW Холодная вода
- SPR Датчик температуры емкостного водонагревателя для регулирования температуры водонагревателя или терморегу-
- лятор
- VA Магниевый защитный анод
- WW Горячая вода
- Ζ Циркуляция

Объем		I	750	1000
Длина (∅)	а	ММ	960	1060
Ширина	b	MM	1045	1145
Высота	С	MM	2106	2166
	d	MM	1923	2025
	е	MM	1327	1373
	f	MM	901	952
	g	MM	321	332
	h	MM	104	104
	k	MM	505	555
	1	MM	Ø 180	Ø 180
	m	MM	457	468
	n	MM	947	1047
без теплоизоляции	0	MM	Ø 750	Ø 850

Коэффициент мощности N_L

Согласно DIN 4708.

Температура запаса воды в емкостном водонагревателе T_{sp} = температура на входе холодной воды + 50 K ^{+5 K/-0 K}

Объем л	160	200	300	500	750	1000
Коэффициент мощности N _L при температуре по-						
дающей магистрали греющего контура						
90 °C	2,5	4,0	9,7	21,0	40,0	45,0
80 °C	2,4	3,7	9,3	19,0	34,0	43,0
70 °C	2,2	3,5	8,7	16,5	26,5	40,0

Указания к коэффициенту мощности N_L

Коэффициент мощности N_L меняется в зависимости от температуры запаса воды в емкостном водонагревателе $T_{\rm sp}$.

Нормативные показатели

 $T_{sp} = 60 \text{ °C} \rightarrow 1.0 \times N_L$

 \blacksquare $T_{sp} = 55 \, ^{\circ}\text{C} \rightarrow 0.75 \, \times \, N_L$

 \blacksquare T_{sp} = 50 °C \rightarrow 0,55 × N_L

 \blacksquare T_{sp} = 45 °C \rightarrow 0,3 × N_L

Кратковременная производительность (10-минутная)

Относительно коэффициента мощности N_L .

Нагрев воды в контуре ГВС с 10 до 45 °C.

Объем л	160	200	300	500	750	1000
Кратковременная производительность (л/10 мин)						
при температуре подачи теплоносителя						
90 °C	210	262	407	618	898	962
80 °C	207	252	399	583	814	939
70 °C	199	246	385	540	704	898

Макс. расход воды (10-минутный)

Относительно коэффициента мощности N_L .

С догревом.

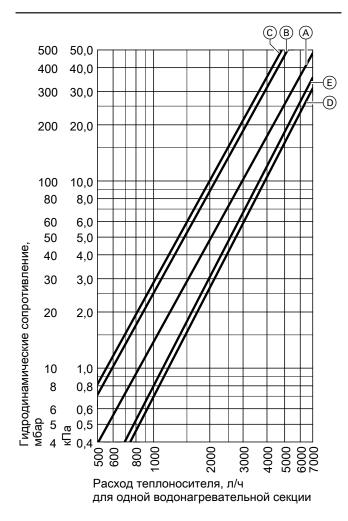
Нагрев воды в контуре ГВС с 10 до 45 °C.

Объем л	160	200	300	500	750	1000
Макс. расход воды (л/мин) при температуре по-						
дающей магистрали греющего контура						
90 °C	21	26	41	62	90	96
80 °C	21	25	40	58	81	94
70 °C	20	25	39	54	70	90

Возможный расход воды

Водонагреватель нагревается до 60 °C.

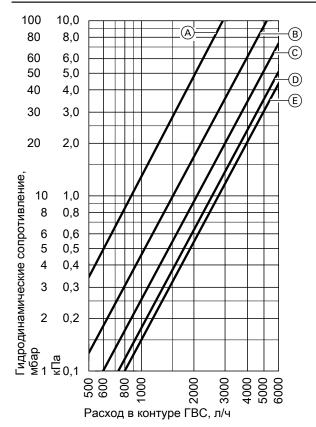
Без догрева.


Объем	Л	160	200	300	500	750	1000
Норма водозабора	л/мин	10	10	15	15	20	20
Возможный расход воды	Л	120	145	240	420	615	835
Вода с t = 60 °C (постоянно)							

Время нагрева

Приведенные данные о времени нагрева достигаются только в том случае, если при соответствующей температуре подачи и нагреве воды в контуре контура ГВС с 10 до 60 °С обеспечена максимальная долговременная мощность емкостного водонагревателя.

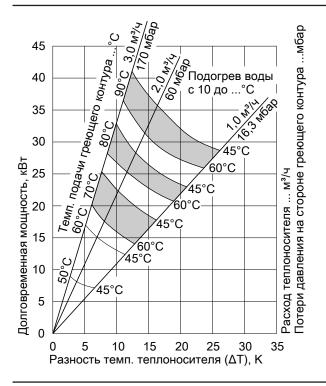
Объем	л	160	200	300	500	750	1000
Время нагрева (мин) при температуре подачи							
греющего контура							
90 °C		19	19	23	28	24	36
80 °C		24	24	31	36	33	46
70 °C		34	37	45	50	47	71


Гидродинамическое сопротивление

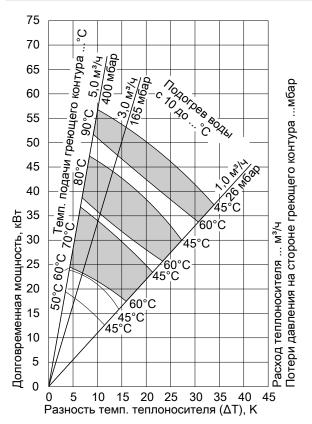
Гидродинамическое сопротивление греющего контура

- А Объем 160 и 200 литров
- Объем 300 литров

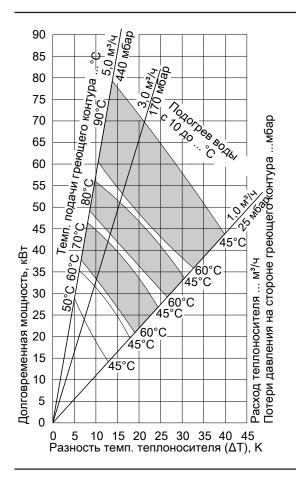
- © (D) Объем 500 литров
- Объем 750 литров
- Объем 1000 литров E



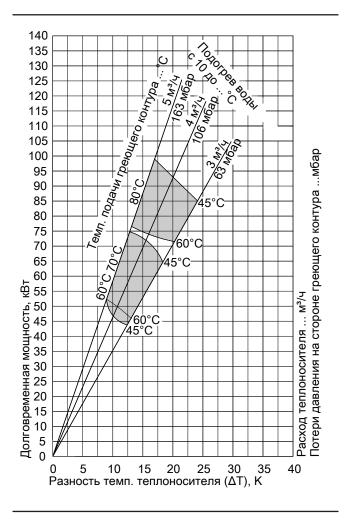
Гидродинамическое сопротивление в контуре ГВС

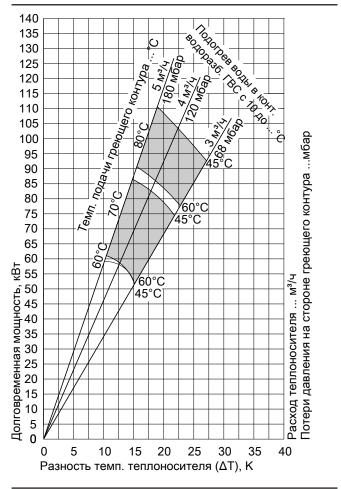

- Объем 160 и 200 литров
- \bigcirc Объем 300 литров
- (C) Объем 500 литров
- Ŏ Объем 750 литров
- Объем 1000 литров

Долговременная мощность


Vitocell 100-V, объем 160 и 200 л

Vitocell 100-V объемом 300 л




Vitocell 100-V объемом 500 л

Vitocell 100-V объемом 750 л

Vitocell 100-V объемом 1000 л

Технические характеристики Vitocell 100-V - батарея водонагревателей

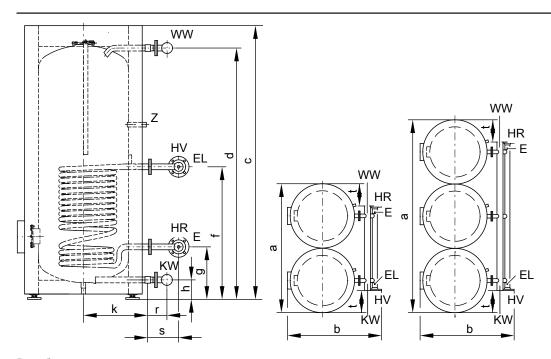
Технические данные батареи водонагревателей (объемом 300 и 500 л)

Емкостные водонагреватели могут быть соединены в батареи из 2 (300 л) и 3 водонагревателей (500 л). Соединительные коллекторы на стороне греющего контура и контура ГВС поставляются изготовителем и заказываются отдельно.

Батареи из более чем 3 водонагревателей могут быть составлены из нескольких батарей, содержащих до 3 водонагревателей. Подключение этих батарей водонагревателей к греющему контуру и контуру ГВС должно быть выполнено монтажной организацией.

Для приготовления горячей воды в сочетании с водогрейными котлами, системами централизованного теплоснабжения и низкотемпературными системами отопления, по выбору с электродогревом.

Годится для следующих установок:


- температура подачи греющего контура/рабочее давление в греющем контуре до 120 °C/ 18 бар (1,8 МПа), 160 °C/ 16 бар (1.6 МПа)
- рабочее давление в контуре ГВС до 10 бар (1,0 МПа)

Объем водонагревателя		л	300		500
Общий объем батареи водонагревателей		Л	600	1000	1500
Количество водонагревателей			2	2	3
Последовательное расположение			••	••	•••
Долговременная мощность	90 °C	кВт	106	140	210
при нагреве воды в контуре ГВС с 10 до 45 °С и тем-		л/ч	2604	3440	5160
пературе подачи в греющем контуре при приведен-	80 °C	кВт	88	116	174
ном ниже расходе теплоносителя		л/ч	2162	2850	4275
	70 °C	кВт	66	90	135
		л/ч	1622	2212	3318
	60 °C	кВт	46	64	96
		л/ч	1130	1572	2358
	50 °C	кВт	36	48	72
		л/ч	884	1178	1767
Долговременная мощность	90 °C	кВт	90	106	159
при нагреве воды в контуре ГВС с 10 до 60 °С и тем-		л/ч	1548	1822	2733
пературе подачи в греющем контуре при приведен-	80 °C	кВт	68	88	132
ном ниже расходе теплоносителя		л/ч	1168	1512	2268
	70 °C	кВт	46	66	99
		л/ч	790	1134	1701
Расход теплоносителя		м ³ /ч	6	6	9
при указанной долговременной мощности					
Габаритные размеры с теплоизоляцией					
Длина	а	MM	1461	1838	2826
Ширина	b	MM	1109	1218	1218
Высота	С	MM	1748	1948	1948
Масса		КГ	334	423	639
Емкостный водонагреватель с теплоизоляцией и колле	кторами				
Объем теплоносителя		Л	25	32	50
включая коллекторы					
Теплообменные поверхности		M ²	3,0	3,9	5,8
Подключения					
Подающая и обратная магистраль (фланцевое соедине	,	DN	50	50	50
Трубопроводы холодной и горячей воды (наружная рез	ьба)	R	11/4	11/4	1½
Циркуляционный трубопровод (наружная резьба)		R	3/4	1	1

Указание по долговременной мощности

При проектировании установки для работы с указанной или рассчитанной долговременной мощностью следует предусмотреть использование соответствующего насоса. Указанная долговременная мощность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ долговременной мощности.

Пример: Объем 500 л

Вид сбоку и сверху

Е Патрубок опорожнения на стороне греющего контура

(внутренняя резьба R ½)

EL Воздухоотводчик (внутренняя резьба R ½)

HR Обратная магистраль греющего контура

HV Подающая магистраль греющего контура

КW/Е Трубопровод холодной воды и вентиль опорожения на стороне контура водоразбора ГВС

WW Трубопровод горячей воды Z Циркуляционный трубопровод

Таблица размеров

Объем водонагревателя		л	300		500
Общий объем батареи водонагревателей		Л	600	1000	1500
Количество водонагревателей			2	2	3
Последовательное расположение			••	••	•••
Длина	а	MM	1461	1848	2836
Ширина	b	MM	1109	1218	1218
Высота	С	MM	1748	1948	1948
	d	MM	1600	1784	1784
	f	MM	875	924	924
	g	MM	260	349	349
	h	MM	76	107	107
	k	MM	343	455	455
	r	MM	127	130	135
	s	MM	237	237	237
	t	MM	206	320	320

Технические данные батареи водонагревателей (объемом 750 и 1000 л)

Емкостные водонагреватели могут быть соединены в батареи из 2 секций (750 л) и максимум 3 секций (1000 л). Соединительные коллекторы на стороне греющего контура и контура ГВС приобретаются отдельно.

Батареи с соединением более 3 секций можно образовать из нескольких батарей с максимум 3 секциями. Подключение этих батарей водонагревателей к греющему контуру и контуру ГВС должно быть выполнено монтажной организацией.

Для приготовления горячей воды в сочетании с водогрейными котлами, системами централизованного теплоснабжения и низкотемпературными системами отопления, по выбору с электродогревом.

Объем водонагревателя		л	750		1000
Общий объем батареи водонагревателей		л	1500	2000	3000
Количество водонагревателей			2	2	3
Последовательное расположение			••	••	•••
Долговременная мощность	90 °C	кВт	246	272	408
при нагреве воды в контуре ГВС с 10 до 45 °C и темпе-		л/ч	6044	6682	10023
ратуре подачи в греющем контуре при приведен-	80 °C	кВт	198	222	333
ном ниже расходе теплоносителя		л/ч	4864	5450	8175
	70 °C	кВт	150	172	258
		л/ч	3686	4226	6339
	60 °C	кВт	106	118	177
		л/ч	2604	2900	4350
	50 °C	кВт	56	66	99
		л/ч	1376	1620	2430
Долговременная мощность	90 °C	кВт	204	242	363
при нагреве воды в контуре ГВС с 10 до 60 °С и темпе-		л/ч	3508	4162	6243
ратуре подачи в греющем контуре при приведен-	80 °C	кВт	154	182	273
ном ниже расходе теплоносителя		л/ч	2648	3130	4695
	70 °C	кВт	106	122	183
		л/ч	1824	2100	3150
Расход теплоносителя		м ³ /ч	10	10	15
при указанной долговременной мощности					
Объем теплоносителя		л	49	53,6	80,4
без соединительных коллекторов					
Теплообменные поверхности	•	M^2	7,4	8,0	12,0

Указание по долговременной мощности

При проектировании установки для работы с указанной или рассчитанной долговременной мощностью следует предусмотреть использование соответствующего насоса. Указанная долговременная мощность достигается только при условии, что номинальная тепловая мощность водогрейного котла ≥ долговременной мощности.

Рабочие характеристики батареи водонагревателей (общим объемом от 600 до 3000 л)

Коэффициент производительности N_L согласно DIN 4708

Температура запаса воды в емкостном водонагревателе = температура холодной воды на входе + 50 $K^{+5 \, \text{K}/-0 \, \text{K}}$

Объем водонагревателя	Л	300	50	00	750	10	00
Общий объем батареи водонагревателей	Л	600	1000	1500	1500	2000	3000
Количество водонагревателей		2	2	3	2	2	3
Коэффициент производительности N _L							
при температуре подачи греющего контура							
90 °C		30	60	101	108	119	183
80 °C		29	55	93	90	115	178
70 °C		28	49	82	74	108	168

Кратковременная производительность (10-минутная)

При коэффициенте производительности N_L

Нагрев воды в контуре ГВС с 10 до 45 $^{\circ}$ С

Объем водонагревателя	Л	300	50	00	750	10	00
Общий объем батареи водонагревателей	Л	600	1000	1500	1500	2000	3000
Количество водонагревателей		2	2	3	2	2	3
Кратковременная производительность							
(л/10 мин)							
при температуре подачи греющего контура							
90 °C		759	1150	1610	1680	1790	2440
80 °C		745	1088	1520	1485	1750	2400
70 °C		728	1016	1400	1310	1680	2300

Максимальный разбор воды (в течение 10 минут)

При коэффициенте производительности N_L

С догревом

Нагрев воды в контуре ГВС с 10 до 45 °C

Объем водонагревателя	Л	300	5	00	750	10	00
Общий объем батареи водо-	л	600	1000	1500	1500	2000	3000
нагревателей							
Количество водонагревате-		2	2	3	2	2	3
лей							
Максимальный разбор воды (л/м	иин)						
при температуре подачи греюще	го конту-						
pa							
90 °C		76	115	161	168	179	244
80 °C		74	109	152	149	175	240
70 °C		73	102	140	131	168	230

Возможный расход воды

Объем водонагревателя нагрет до 60 °C Без догрева

Объем водонагревателя	л	300	50	00	750	10	00
Общий объем батареи водонагр	е- л	600	1000	1500	1500	2000	3000
вателей							
Количество водонагревателей		2	2	3	2	2	3
Норма водоразбора	л/мин	30	30	30	40	40	60
Возможный расход воды	Л	480	840	1260	1230	1670	2505
вода с t = 60 °C (постоянно)							

Состояние при поставке

Vitocell 100-V, тип CVA

Объем 160, 200 и 300 литров

Стальной емкостный водонагреватель с внутренним эмалевым покрытием Сегаргоtect для приготовления горячей воды.

- Встроенная погружная гильза для датчика температуры водонагревателя или терморегулятора
- Регулируемые опоры
- Магниевый защитный анод
- Встроенная теплоизоляция

Цвет эпоксидного покрытия листовой обшивки - серебристый. Емкостные водонагреватели объемом 160, 200 и 300 л поставляются также белого цвета.

Vitocell 100-V, тип CVA

объем 500 л

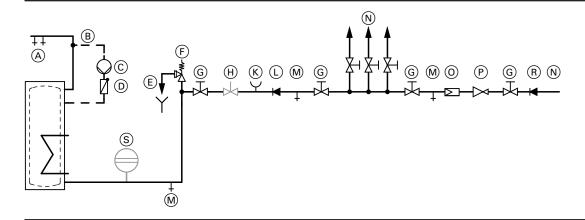
Стальной емкостный водонагреватель с внутренним эмалевым покрытием Ceraprotect для приготовления горячей воды.

- Встроенная погружная гильза для датчика температуры водонагревателя или терморегулятора
- Регулируемые опоры
- Магниевый защитный анод

Упаковано отдельно:

 ■ съемная теплоизоляция, цвет пластикового покрытия теплоизоляции - серебристый

Vitocell 100-V, тип CVA Объем 750 и 1000 литров


Стальной емкостный водонагреватель с внутренним эмалевым покрытием Сегаргоtect для приготовления горячей воды.

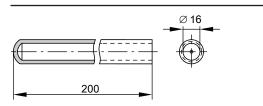
- Термометр
- Встроенная погружная гильза для датчика температуры водонагревателя или терморегулятора
- Регулируемые опоры
- 2 магниевых электрода пассивной анодной защиты Упаковано отдельно:
- в съемная теплоизоляция, цвет пластикового покрытия теплоизоляции серебристый

Указания по проектированию

Подключения в контуре ГВС

Подключение согласно DIN 1988

- А Трубопровод горячей воды
- В Циркуляционный трубопровод
- © Циркуляционный насос
- Подпружиненный обратный клапан
- (E) Выпускная линия с контролируемым выходным отверстием
- F) Предохранительный клапан
- (G) Запорный вентиль
- Клапан регулирования расхода.
 (рекоомендация: монтаж и настройка максимального расхода воды должны соответствовать 10-минутной производительности емкостного водонагревателя).
- Обязателен монтаж предохранительного клапана.


Рекомендация: Установить предохранительный клапан выше верхней кромки емкостного водонагревателя в качестве защиты от загрязнения, образования накипи и высоких температур. При работах на предохранительном клапане опорожнение емкостного водонагревателя не требуется.

- (к) Подключение манометра
- Обратный клапан
- М Патрубок опорожнения
- N Трубопровод холодной воды
- Фильтр для воды в контуре ГВС
- Р Редукционный клапан
- (R) Обратный клапан/разделитель труб
- ⑤ Мембранный расширительный бак, пригодный для контура ГВС

Погружные гильзы

Vitocell 100-V (объем от 160 до 1000 л)

Погружная гильза вварена в емкостный водонагреватель.

Температура подачи греющего контура свыше 110 °C

При этих условиях эксплуатации согласно DIN 4753 в водонагреватель необходимо дополнительно установить прошедший конструктивные испытания защитный ограничитель температуры, ограничивающий температуру до 95 °C.

Гарантия

Предоставляемая нами гарантия на емкостный водонагреватель сохраняет силу только при условии, что качество нагреваемой воды соответствует действующему положению о питьевой воде, и имеющиеся водоподготовительные установки исправно функционируют.

Указания по проектированию (продолжение)

Теплообменные поверхности

Коррозионно-стойкие и защищенные теплообменные поверхности (контур ГВС / отопительный контур) соответствуют исполнению С по DIN 1988-200.

Электронагревательная вставка

При использовании стороннего нагревательного элемента, он должен иметь необогреваемую длину не менее 100 мм, а также быть предназначенным для эмалированных емкостных водонагревателей.

Инструкция по проектированию

Дополнительные указания по проектированию и расчету приведены в "Инструкции по проектированию централизованной системы горячего водоснабжения с емкостными водонагревателями Vitocell".

Применение по назначению

Согласно назначению прибор может устанавливаться и эксплуатироваться только в закрытых системах в соответствии с EN 12828 / DIN 1988 или в гелиоустановках в соответствии с EN 12977 с учетом соответствующих инструкций по монтажу, сервисному обслуживанию и эксплуатации. Емкостные водонагреватели предусмотрены исключительно для аккумулирования и нагрева воды с качеством, эквивалентным питьевой; буферные емкости отопительного контура предназначены только для воды для наполнения с качеством, эквивалентным питьевой. Гелиоколлекторы должны эксплуатироваться только с использованием теплоносителя, имеющего допуск изготовителя.

Условием применения по назначению является стационарный монтаж в сочетании с элементами, имеющими допуск для эксплуатации с этой установкой.

Производственное или промышленное использование в целях, отличных от отопления помещений или приготовления горячей воды, считается использованием не по назначению.

Цели применения, выходящие за эти рамки, в отдельных случаях могут требовать одобрения изготовителя.

Неправильное обращение с прибором или его неправильная эксплуатация (например, вследствие открытия прибора пользователем установки) запрещено и ведет к освобождению от ответственности.

Неправильным обращением также считается изменение элементов системы относительно предусмотренной для них функциональности (например, непосредственное приготовление горячей воды в коллекторе).

Необходимо соблюдать законодательные нормы, в особенности относительно гигиены приготовления горячей воды.

Принадлежности

Блок предохранительных устройств по DIN 1988

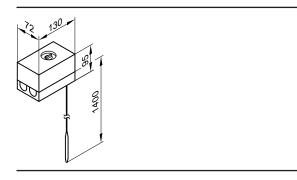
Компоненты:

- Запорный вентиль
- Обратный клапан и контрольный штуцер
- Штуцер для подключения манометра
- Мембранный предохранительный клапан

Объем водонагревателя до 200 л

- 10 бар (1 МПа): **№ заказа 7219 722**
- А 6 бар (0,6 МПа): № заказа 7265 023
- DN 15/R 3/4
- Макс. отопительная мощность: 75 кВт

Объем водонагревателя свыше 300 л


- 10 бар (1 МПа): **№ заказа 7180 662**
- А 6 бар (0,6 МПа): № заказа 7179 666
- DN 20/R 1
- Макс. отопительная мощность: 150 кВт

Терморегулятор

№ заказа 7151 989

- С термостатической системой.
- С ручкой настройки снаружи на корпусе.
- Без погружной гильзы
- У емкостных водонагревателей Viessmann погружная гильза входит в комплект поставки.
- С рейкой для монтажа на емкостном водонагревателе или на стене.

Технические данные

Подключение

Вид защиты

Диапазон настройки

Разность между температурой

вкл. и выкл.

Функция переключения

Коммутационная способность

3-проводным кабелем с попе-

речным сечением 1,5 мм² IP 41 согласно EN 60529

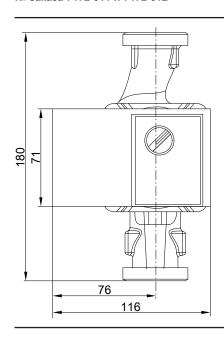
30 - 60 °C

перенастройка до 110 °C

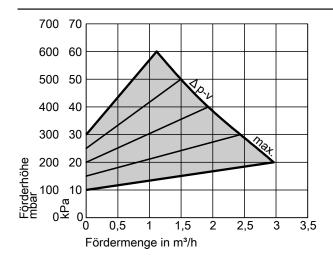
макс. 11 К

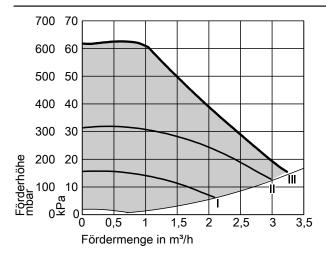
6(1,5) A, 250 B~

при росте температуры с 2 на



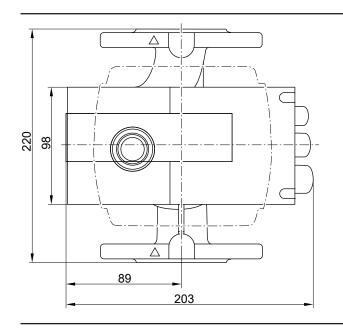
Рег. № по DIN


DIN TR 1168

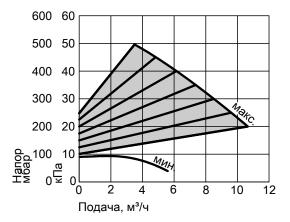

Насос загрузки водонагревателя

№ заказа 7172 611 и 7172 612

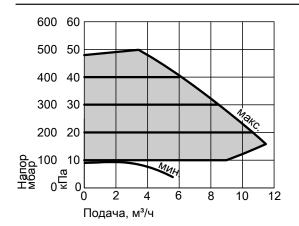
№ заказа		7172 611	7172 612
Тип насоса		Yonos Para 25/6	Yonos Para 30/6
Напряжение	B~	230	230
Потребляемая	Вт	3-45	3-45
мощность			
Подключение	G	1½	2
Соединитель-	M	5,0	5,0
ный кабель			
для водогрей-		до 40 кВт	от 40 до 70 кВт
ных котлов			
мощностью			



Δр-ν (переменная)


Постоянная скорость

Насос загрузки водонагревателя


№ заказа 7172 613

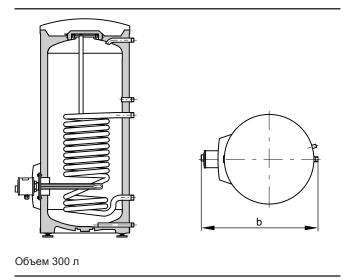
№ заказа		7172 613
Тип насоса		Stratos 40/1-4
Напряжение	B~	230
Потребляемая мощность	Вт	14-130
Подключение	DN	40
Соединительный кабель	M	5,0
для водогрейных котлов мощ	HO-	от 70 кВт
СТЬЮ		

Δр-ν (переменная)

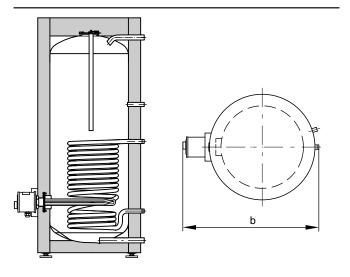
Δр-с (постоянно)

5457 959 GUS

Электронагревательная вставка ЕНЕ для установки в Vitocell 100-V (объем от 300 до 1000 л)

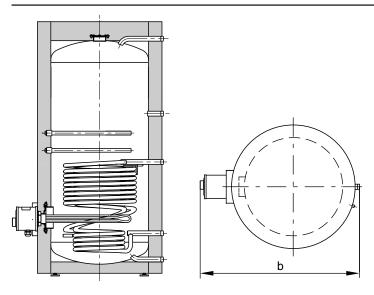

Может использоваться только для воды мягкой и средней жесткости до 14 нем. град. жесткости (степень жесткости 2, 2,5 моль/м³)

Вид тока и номинальное напряжение 3/N/PE 400 B/50 Гц


Степень защиты: ІР 54

0/14/1 E 400 B/00 I H								
Диапазон мощности				макс. 6 кВт		макс. 12 кВт		
Номинальное потребление в норрежиме/при быстром нагреве	рмальном	кВт	2	4	6	4	8	12
Номинальный ток		Α	8,7	8,7	8,7	17,4	17,4	17,4
Время нагрева с 10 до 60 °C	300 л	Ч	7,4	3,7	2,5	_	_	_
	500 л	Ч	11,9	5,9	4,0	_	_	_
	750 л	Ч	17,4	8,7	5,8	8,7	4,3	2,8
	1000 л	Ч	23,1	11,6	7,7	11,6	5,8	3,8

Емкостные водонагреватели с электронагревательной вставкой ЕНЕ 300 500 750 1000 Объем водонагревателя Л Объем, нагреваемый нагреватель-254 408 598 795 ной вставкой Размеры Ширина b (с электронагревательной 1235 850 1025 1135 вставкой ЕНЕ) ММ Минимальное расстояние до стены 2/4/6 кВт 685 650 650 650 мм 4/8/12 кВт 950 950 для монтажа электронагревательной ММ вставки ЕНЕ Macca Vitocell 100-V 151 181 295 367 ΚГ Электронагре-2/4/6 кВт 2 2 2 2 ΚГ 4/8/12 кВт 3 3 вательная ΚГ вставка ЕНЕ



Размер b: 850 мм (ширина с электронагревательной вставкой EHE)

Объем 500 л

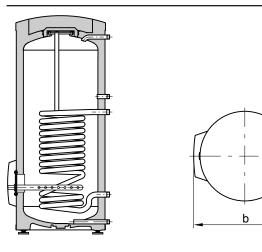
Размер b: 1028 мм (ширина с электронагревательной вставкой EHE)

Объем 750/1000 л

Размер b: 1144/1244 мм (ширина с электронагревательной вставкой ЕНЕ)

Трубка послойной загрузки (объем 300 л)

Трубка послойной загрузки обеспечивает быстрое приготовление горячей воды для установок с тепловыми насосами и большим расходом горячей воды.


С помощью трубки послойной загрузки горячая вода медленно поступает через отверстия в нижней части водонагревателя. Уменьшается перемешивание воды с различной температурой. Горячая вода лучше и равномернее распределяется по большому объему (до водозаборного патрубка).

Трубка послойной загрузки с фланцем и кожухом:

- Трубка послойной загрузки представляет собой трубку с заглушкой в конце и несколькими отверстиями.
- Трубка послойной загрузки изготовлена из пластика, пригодного для питьевой воды.
- В особенности трубка эффективна для использования вместе с тепловыми насосами большой мощности.
- Дополнительно требуется пластинчатый теплообменник (Vitotrans 100). Параметры пластинчатого теплообменника должны быть рассчитаны, исходя из конфигурации установки.

Объем, нагреваемый трубкой послойной	Л	248
загруки:		
Размеры		
Ширина b	MM	705
Минимальное расстояние до стены		,
для монтажа трубки послойной загрузки	MM	465

Macca		
Трубка послойной загрузки	КГ	0,5

Vitocell 100-V с трубкой послойной загрузки (объем 300 л)

b = ширина с трубкой послойной загрузки

5457 959 GUS

VITOCELL 100-V

Оставляем за собой право на технические изменения.

ТОВ "Віссманн" вул. Димитрова, 5 корп. 10-А 03680, м.Київ, Україна тел. +38 044 4619841 факс. +38 044 4619843

Viessmann Group ООО "Виссманн" г. Москва тел. +7 (495) 663 21 11 факс. +7 (495) 663 21 12 www.viessmann.ru